Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation

نویسندگان

  • Xue-li Bian
  • Hang-zi Chen
  • Peng-bo Yang
  • Ying-ping Li
  • Fen-na Zhang
  • Jia-yuan Zhang
  • Wei-jia Wang
  • Wen-xiu Zhao
  • Sheng Zhang
  • Qi-tao Chen
  • Yu Zheng
  • Xiao-yu Sun
  • Xiao-min Wang
  • Kun-Yi Chien
  • Qiao Wu
چکیده

Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting enzyme in gluconeogenesis, to increase gluconeogenesis and suppress glycolysis, resulting in ATP depletion and cell growth arrest. However, PEPCK1 becomes labile after sumoylation and is degraded via ubiquitination, which is augmented by the p300 acetylation of ubiquitin-conjugating enzyme 9 (Ubc9). Although Nur77 attenuates sumoylation and stabilizes PEPCK1 via impairing p300 activity and preventing the Ubc9-PEPCK1 interaction, Nur77 is silenced in HCC samples due to Snail-mediated DNA methylation of the Nur77 promoter. Our study reveals a unique mechanism to suppress HCC by switching from glycolysis to gluconeogenesis through Nur77 antagonism of PEPCK1 degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.

Metformin is widely used to treat hyperglycemia in individuals with type 2 diabetes. Recently the LKB1/AMP-activated protein kinase (LKB1/AMPK) pathway was proposed to mediate the action of metformin on hepatic gluconeogenesis. However, the molecular mechanism by which this pathway operates had remained elusive. Surprisingly, here we have found that in mice lacking AMPK in the liver, blood gluc...

متن کامل

Inhibition of gluconeogenesis in isolated rat hepatocytes after chronic treatment with phenobarbital.

Gluconeogenesis was studied in hepatocytes isolated from phenobarbital-pretreated rats fasted for 24 h. In closed vial incubations, glucose production from lactate (20 mmol/l) and pyruvate (2 mmol/l), alanine (20 mmol/l) or glutamine (20 mmol/l) was suppressed by about 30-45%, although glycerol metabolism was not affected. In hepatocytes perifused with lactate and pyruvate (ratio 10:1), glucose...

متن کامل

Protein Acetylation Microarray Reveals that NuA4 Controls Key Metabolic Target Regulating Gluconeogenesis

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) conduct many critical functions through nonhistone substrates in metazoans, but only chromatin-associated nonhistone substrates are known in Saccharomyces cerevisiae. Using yeast proteome microarrays, we identified and validated many nonchromatin substrates of the essential nucleosome acetyltransferase of H4 (NuA4) complex. Amon...

متن کامل

Apolipoprotein A-IV reduces hepatic gluconeogenesis through nuclear receptor NR1D1.

We showed recently that apoA-IV improves glucose homeostasis by enhancing pancreatic insulin secretion in the presence of elevated levels of glucose. Therefore, examined whether apolipoprotein A-IV (apoA-IV) also regulates glucose metabolism through the suppression of hepatic gluconeogenesis. The ability of apoA-IV to lower gluconeogenic gene expression and glucose production was measured in ap...

متن کامل

Loss of TR4 orphan nuclear receptor reduces phosphoenolpyruvate carboxykinase-mediated gluconeogenesis.

OBJECTIVE Regulation of phosphoenolpyruvate carboxykinase (PEPCK), the key gene in gluconeogenesis, is critical for glucose homeostasis in response to quick nutritional depletion and/or hormonal alteration. RESEARCH DESIGN/METHODS AND RESULTS Here, we identified the testicular orphan nuclear receptor 4 (TR4) as a key PEPCK regulator modulating PEPCK gene via a transcriptional mechanism. TR4 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017